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ABSTRACT

Exact solutions are presented to a number of small perturbation

magnetohydrodynamic flow problems. The conditions under which the

solutions are obtained are as fqllows:

1. The flow is two-dimensional, and is only slightly perturbed
from a uniform flow.

2. The magnetic field vector is also two-dimensional and lies
in the plane of the flow.

3. The distortion of the applied field by the induced currents
is neglected.

4. Physical boundaries on the flow are one or two infinite

» plates parallel to the flow direction.
5. The conductivity of the fluid is a scalar quantity, but may

vary with position,
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With these assumptions, the perturbations to the flow are calculated
for various magnetic fields (chiefly those due to a current flowing in a
single wire, and a linear dipole) fcr incompressible, subsonic and super-
sonic free stream speeds. Calculations of the pressure on the walls and

other quantities are presented for illustrative examples, including cases
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in which the conductivity is not uniform throughout the flow.
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LIST OF SYMBOLS

Dimensional quantities may be taken to be expressed in the rationalized

MKS system of units.

Dimensional

B#% , B*
X

Non-Dimensional
d
o, o

u', v u, v

b, b
X

X, Yy
p'sp
P, p
s', 8
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current vector

z-component of the
current vector

conductivity

velocity vector
velocity components
free stream velocity
magnetic field vector

components of the
magnetic field vector

reference magnetic
field strength

rectangular Cartesian
coordinates

reference length
mass density
reference mass density
pressure
reference pressure
entropy

temperature




Dimensional
——=Langional

Non-Dimensional

R

F(x)

61 C‘é; contours,

';M

gas constant

ratio of specific heat

interaction parameter

Mach number
dummy variables
complex variable

complex function of
complex variable

2 : 1'
lengths

complex variables
special function

stream function

pPermeability of free
space

current

complex function of
real variable

Subscripts P and ¢ refer to particular and complementary solutions.
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1. Introduction

A number of interesting steady flow problems in inviscid magneto-
hydrodynamics may be treated approximately by neglecting entirely the
magnetic Reynolds number, and assuming further that the interaction
parameter (as defined, say, in Ref. 1) is small. In this paper solutions
are given to a number of these problems under the following additional
restrictions: first, the flow is two-dimensional; second, the magnetic
field lies in the plane of the flow; third, the flow is only slightly perturbed
from a uniform flow, the perturbation being of the first order in the inter-
action parameter.

Possibly the simplest flow of this type is that considered by Sherman;2
the flow, which in this case is taken to be incompressible, is through an
infinite channel of arbitrary height, while the magnetic field is due to a
current flowing in a single wire located outside the channel and running
perpendicular to the flow direction. This problem was treated numerically;
the resulting pressure gradient on the surface of the channel was used in a
subsequent paper3 to investigate the boundary layer over one wall of the
channel. :

A similar problem in the sense of being a small perturbation on a
uniform flow was discussed by Kemp and Petschek, 4 but the geometrical
configuration treated in that paper was somewhat different.

It will be shown in this paper that the solution to the channel problem
may be obtained analytically; the case in which the channel height is infinite
has a simple closed-form solution. In addition, a method will be given for
solving similar channel flow problems for any two-dimensional magnetic
field arising from an arrangement of pole pieces or current carrying wires
outside the channel. Finally, solutions are given to some linearized sub-
sonic and supersonic compressible flow problems with the same geometry,
and some incompressible problems in which the conductivity is not uniform.

2. General Analysis

In the absence of an applied electric field the current is given by
the expression

i$=v*!*x§:=‘
(2.1)
Taking Cartesian coordinates (x%, y¥*) in the plane of the flow, with

the x-axis parallel to the undisturbed flow, it is found that the current is
entirely in the z-direction and is given by

. % X%, K ¥ Wy R
3, =0 B -v"B")

z (2.2)
The body force on the fluid is given by

vk ok iRk (Ko R
\i X§ -('Jz BY )Jz Bx ’o) (2 3)

and the equations of motion become




f*‘@"‘gx#\l‘?‘ﬂ)+ gf: +Jg B ¥a0

(2. 4)
X * . X
f*(u*% + v*-g-lyk)-n- 3-5‘:-.)‘ Bx*. 0
(2.5)
In addition, the equation of continuity is
2 (2 U+ Ry (*v¥)- 0
(2.6)
and the energy equation is
¥ 3% x o
¥ =
W v B8 - e
(2.7)

Finally, we assume that the fluid is a perfect gas with constant ratio of
specific heats; so that

p*-p"‘RT*
(2. 8)
* R d X d %
dS'b,_‘{-i -b’?&}
(2.9)

The following non-dimensional quantities will now be defined:

1K

*®
X=2 V%, dww
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(2.10)

In terms of these variables, Eqs. (2.4) - (2. 9) become:

F'(dg-;'?‘ +v' -g-%) + -g-xﬂ- +$J; b, =0
PWEL+vBL )4 285 b xo

W+ R e'v=o

. \ ' i
“3%“‘3%'8%.-

(2.11)

(2.12)

(2.13)

(2. 14)
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(2.15)
Where S (the interaction parameter) is defined by
o*Bl v
S= _B‘B'U""_
(2.16)

The magnetic field is assumed to be unaffected by the currernts
flowing in the gas (low magnetic Reynolds number); this assumption will
always break down far from the sources of the field, but will be satisfactory
for the purposes of this paper. In these circumstances, Maxwell's equations
will require the magnetic field to satisfy

d dby _
2+ 35 =0
(2.17)
a_.L - Q—b." =
dx oY 0
(2.18)

Subject to these conditions, however, the magnetic field will be a given
quantity in any particular problem.

The flows to be considered in this paper will be only slightly per-

turbed from a uniform parallel flow; perturbation quantities are defined
as follows:

Ww=1+Su
(2.19)

v'=Sv
(2.20)
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(2.21)
s'=8s

(2.22)
P'= -b?l(:‘l-z +Sp

2.2

e (2. 23)
where M2 = 2 is the free stream Mach number. Substituting Eqs. (2. 19)

(2.23) in Eqgs. (é). 11) - (2.15) and taking only terms of order S then gives:

j—“‘_ + QL =.byz'

ox X

(2.24)
v dp _
x T —b—s = by by

(2.25)
du . dv . dpo_
ox T vt 3‘3“’

(2.26)
%—:—zrm‘b,,"

(2.27)
ds= 54 ¥ Midp-vap }

(2. 28)




The last equation may be integrated at.once to give
s= Yo X 0
¥-i 7
(2.29)
Equations (2.24) - (2.27) and (2.29) present the problem under considera-
tion in a form suitable for analysis, but before considering any particular

problem, some general conclusions may be drawn. First, Eq. (2.27) may
be integrated at once to give

A
sy =¥M[_ by *,v)de
(2. 30)

Second, the linearized momentum equations, (2,24) and (2. 25), now
describe a flow moving under a specified non-conservative body force; this
force is calculated directly from the given field quantities. Third, the
x-momentum Eq. (2.24) may be integrated to give

xX
wtps - f b2, v)dé
e (2.31)

Next, the terms in u and p may be eliminated from Eq. (2.26) by
using Eqs. (2.24), (2.27) and (2.29) to give:

A LM 2 = ~OM3]L 2
S =048 = [ix -0 ¥ b,
(2.32)
Now, if Eqs. (2.25) and (2. 32) can be solved for v and p, u may be
found from Eq. (2.31), and p from Egs. (2.29) and (2. 30), .thus completing
the solution of the problem.

3. Incompressible Problems

In the incompressible case Eqs., (2.25) and (2, 32) may be written

%* %$=bxby
(3.1)




o~

(3.2)

which equation together with Eq, (2.31):

X
we-p- [ by y)dx
-00

(3.3)
define the problem.

It is a remarkable fact that a particular solution of Eqs. (3.1) and
(3. 2) may be found for an arbitrary magnetic field. This solution is:

Ve=3by[ blnde

(3. 4)

om b bnddes [ {BEE0b € n)ae
(3.5)

The integrals in these expressions will be convergent in all normal
cases, The complete solution to Eqs. (3.1) and (3.2) can now be written

V= VP+VC

P=Ry*F,

where Ve and P satisfy

(3.6)

&
¢
+

o|Q
oy ¥

1}

°

(s V)
x

oy
]
n
(3

(3.7)




Clearly, Eq. (3.7) may be satisfied by writing

R+ive =W X+iY)=w(2)
(3. 8)

where w (z) is an analytic function of the complex variable z.

The boundary condition appropriate to any particular problem will
require the normal component of the velocity to vanish at a solid surface;
in this paper we will consider only infinite channels defined by y = 0 and
y = H, say, together with the limiting case H—+ ., On these surfaces the
boundary condition then reduces to

0w+v‘,=0 (3. 9)

Single Wire Case

Turning now to particular cases, the simplest magnetic field is
that due to a current I in an infinite wire through the point (0, -1) with the
lower wall of the channel at y = 0. The physical distance of the_wire from
the wall is Vo and B may be taken to be the field at the origin, , bo /27ryo.
Then

T
X< (yr)* bY X"+ T St

g (3.10)
Voo EXM g
PT xT 4 (Ve )T
{3.11)
p_= ik—(y“)m" '\71:'\"]
P %2+ (V+*
(3.12)

In deriving these expressions from Egs. (3.4) and (3. 5) all the
integrals were taken from the lower limits { = 0 instead of { = -. It may
be verified that in this particular case Eqgs. (3.11) and (3. 12) are still par-
ticular solutions to Eqs. (3.1) and (3.2)., A slight simplification of the
algebra results from this unimportant modification.

Considering first the case of infinite channel height, w (z) must be
analytic for &z > 0, and satisfy:

-8-




-1
g w@)= %—t:‘Lx— on Y=0
(3.13)

The solution may be obtained by standard methods and is easily shown to be
2 i~iz
w(z)= -—%I
@) 2(z%1)

The complete flow field is now easily established, but it will be
sufficient here to derive the more important features of this flow. The
pressure on the wall is given by

(3.14)

x-tan X - 4x ] L1122

x,0)=
P 2(X%4¢1)
(3.15)
In addition, we find
1 t+Y
vioy)= Xio 2~
2(y*-1)
4 (3.16)
an
o= 32
2U(0,¥)= ko y)= ST
(3.17)

This profile is, of course, rotational, and represents the amount of
vorticity produced by the non-conservative force field, Finally, the pres-
sure gradient on the wall is found from Eq. (3. 15) to be

d _ax(x-tan ) +4 3~ 1y -ﬁg—'-
_3%1,,:0' oA+ n*
(3.18)

At the origin this gives%&(o, 0) =1w¥ 2, Equations (3.15) and (3. 18) are

-9-
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shown in Figs. 1 and 2, together with material to be described later.

Sing}e Wire and Channel

Next, consider an infinitely long channel with walls at y = 0 and
y = H, the magnetic field being the same as in the previous case. v, and pp
are still given by Eqs. (3.11) and (3. 12), but, in addition to Eq. (3.13),
w (2) must satisfy

J.xu_n“'_’.‘_
2 41 -
g w= YE+ (R +1) ony=H

(3.19)

Defining

(3.20)

w (z) may be shown to be given by:

x : : 1
W(2) Kl“x-&ﬁ*—‘lkoth iy - COthiTTA- 7.]- £,

@
i Z 1n (new) _ o
gHi n=1 [ n-2Xn-1-X) (n-p)(n-l-p)]

(3.21)

Interesting deductions that can be derived from Eq. (3. 21) without summing
the series are:

Zu.(o,v)zu.(-o,y)-.-% [l&%ﬁ!) _ Yi‘-l ]

(3.22)
2p(0,¥) = P(w,Y) = .K'}‘“H‘M 9}

(3. 23)

-10-




This expression for the pressure drop along the channel is plotted
in Fig. 3. For finite channel flows of this type, the drag is just the product
of the channel height and the pressure drop. However, it is not necessary
to calculate the flow field to determine the drag; to this order it is only
necessary to integrate the magnetic force through the field, When H— <
the drag is logarithmically infinite, a result which is due to the slow way
in which the field decreases at large distances from the wire. The pressure
on the lower wall (y = 0) is given by

1 ~f 2
PX,0)= ﬁln(HH shx 7 4 wils 7 {x-tan ")‘#le\ 1—*'-'
¢h !ﬂ ~cos”3’ x*+ 1

[(“~ ' )2-+<x) 2nH+4| .2H <~
zn’ *Gn ][(“ -zm )+ ]

-
aH

%L )n-1-20 - &) }tan A T (N -4, Z_L(EM)_
et

(3.24)

This expression is shown for various values of H in Fig, 1, and its
derivative in Fig. 2., It can be shown that for any finite H the pressure
tends to its asymptotic value from above, while for infinite H the reverse
is true--an interesting case of non-uniform convergence. The curves for
H = 0 correspond to the assumption v = 0 (from continuity) and come from
integrating Eq. (3..3) on this basis,

The results obtained for the pressure gradient appear to agree quite
closely with those of Sherman;3 the actual pressures differ by a nearly
constant amount; this is probably due to the fact that the numerical inte-
gration was commenced by setting p = 0 at some finite upstream distance
and is of no importance. The pressure gradient is unfavorable for a
boundary layer on the wall over a distance of the order of unity near the
wire., This unfavorable region shrinks with the channel height.

Two Wires

As an example of a slightly more complicated magnetic field, as
well as a more realistic case in the sense that the net current giving rise
to the magnetic field is zero, consider two wires located at the points (X, -1),
(-X, -1) carrying equal currents I in opposite directions. The distance of
either wire from the wall y = 0 is y, and the distance between the wires is
2Xy,. B, will again be taken to be - “ol/ 27ry°, so that the non-dimensional

~11-
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field components are

='Y77:—H oY) = —(x+ §X-X2
b= GG Gre ~ et by® o2y G ) L s ¢ ryovnny)

(3.25)
The particular solution in this case is:
1 (tan™ 24X _ggnt XX ..‘5%)_— 2. . §§-x;
V=2 (ta'“ Y+i tan y+|)[(x~o ty+ox * (X% +(y+ 1) ]
(3. 26)

= 2xX (y+1) [ | x4 X -1y

e [(x+)6"+(y+|)’j[(x—X)‘-r(y+n)’j tan Y+t -tan %]*i[(“. Yo+ (Y + D2
(§-§z ] (x-)gizi-gxﬂ)’*

Y& )+(~/+t)]+3¥ 1a €T I

(3.27)
so that for the single wall case w must satisfy
g w= i(tan"(x'fX)-tan"(x*X?)[ \—ﬁ&%z- T’f}gé;bz] ony=0
(3.28)
The solution to this problem is
e e 401 SR @0l 2K
w="dry T TEEE YL TGERoiT
2R+ C gt —
4L z-X)1n iy Fitan X + §itan’X
2 (2-XK+1\ ED. ST . O
(3.29)

-12-




Hence

) B -TeX2
2U(0Y) = (s0,Y) = TN DE+G+D*]

(3. 30)

plo,y) =0
(3.31)

- 2 b s bt g o], 2040 2 %)
P(.0) [(X-W_ﬁ: Ty Gy fa‘eerX>-tan” o0 ""“’q*' Ty LT S o S Y
2
- (\uX)ln%_ (x-X>1n (—Xﬁ(—"&&-—l‘* > RV
23 AT 6 23 £ S "?‘,{é%l'_-o-‘.—

X+ XY+ 1

(3. 32)

The drag in this case is finite; it can be found from integrating
Eq. (3.30), but it can also be found from integrating the force in the
x-direction through the whole flow field without calculating the actual
velocity components. Either way, the rgsult is-I- In (1 + X%). The2d1men-
gional drag fer unit length is then o UB, Yo . In (1 + X2) = oUp, ¢,
In(l1 +X The pressure on the wall Eq, (3.32) is shown in Flg 4 for
number of values X; the pressure gradient is shown in Fig. 5.

For comparative purposes the product of the current in either wire
times the distance between the wires has been kept constant. This has the
effect of making the reference field equal to the y-component of the field
at the origin and permits transition to the case of the linear dipole. For
large X the two wires behave independently as may be seen by comparing
with the previous case., However, as X gets smaller the character of the
pressure distribution changes; the pressure gradient becomes unfavorable
over a longer distance, but has smaller values. The curves for X = 0.1 are
indistinguishable from those for the dipole case (X = 0) which will be presented
next.

Linear Dipole

Particularly simple results may be found in the case of the linear
dipole, If this is placed at the point (0, -1)(distant y, from the wall) and
the magnetic field at (0, 0) is taken to be By, the non-dimensional com-
ponents of the magnetic field are:

-13-




‘3&" ~2X(Y+t1i b = x* - Y+ 1)*
X2+ v+ Y] Y~ [x*+(y+1)*)*
(3.33)

This case may also be derived from the previous case by letting I become
large and X become small in such a way that 2XI = ZwBoyo/po. The par-
ticular solution is:

) v+ X2 v+ 1))
VP_ [X2+ye*]?

(3.34)
o= Ll iy e dx?]
P [x*+(yt l);r';
(3.35)
so that, for the infinite channel height case,
~303-1)
Jdw= T’(‘m onv=0
(3.36)
Hence
w:-*‘(zz+3iz-4)(z+i).3
(3.37)
The complete solution is then:
ued Grtan' Zo)  EXDEGRH2Y-) i+ 0 (2 +4v-1))
T (ye3 + (Y+ 0 & +(y+ D*]L
(3. 38)
ve BDE+arota)]
= Ix* +(y+)*J*

-14-




D R 4 By 430+ R (R + 4 v48))
. (x*+(y+1)*)3

(3. 40)
Also, the stream function defined by
= - ) = W\
Y=o W
(3. 41)
is found to be
=_ Y(Y-hl) 5T
Voo X (F v i) -4 RT; lY{%-\-(vn)“}
(3. 42)
The pressure gradient on the wall is
4 2
) = X0-3x +23x - &
3% P(x,0) NG
(3.43)

Lastly, the streamline which is defined bykl;--y rises in passing the dipole,
the amount of the rise being

S o (Yo+2)
Ay=g- LSL_"-“@,u)
(3. 44)

The pressure and the pressure gradient are shown in Figs. 4 and 5,

Linear Dipole and Channel

If a finite channel is introduced having walls aty = 0 and y = H, the
conditions on v, are Eq. (3.36) and

0 w=-% (H+l)[x2'—(H+s)2]/[xz'+ (Hﬂ)z]a
(3. 45)

The complementary solution is then

-15-
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we- R - A B0 20 g - g0

(3. 46)

where A —Z'PIIE —1-21'H1—2 and ¥ and ¥ 'are defined by

\P(z):f-zlnzszjlzlnr‘(zﬂ)
‘1‘(7-)=5-:z. lnz‘ﬁgf (3. 47)
as in Ref, 5, Thus:

2n@Y=weY)= g [((%:%21 y+.)3]

(3. 48)

2p(0,Y)=pP(o,y)=~ % %‘

(3. 49) .

The last expression gives the pressure drop along the channel and is
shown in Fig. 6. The pressure on the wally = 0 is

_-xgx"+ix'-+c) _ JU(H+2) xStéiﬂ
eX, o) & +1) Ik(.H*H)"' LML i (“ +(§X_H)L

i
n+2

- R S
2.
HHHD S BrdR) +%)

(3.50)
and is shown in Fig. 7. The effect of the channel in this case, as in the
case of the single wire is again to reduce the region of unfavorable pressure

gradient; eventually, as H—0 the pressure drops continuously along the
channel.

-16-




4, Subsonic Problems

No solution of the generality of Eqs. (3. 4) and (3. 5) is known in the
case of subsonic compressible flow. It is not sufficient, for the inhomoge-
neous problem, merely to scale the quantities according to the Prandtl-
Glauert rule. This is because the existence of the particular solution Eqs.

(3. 4) and (3. 5) depends crucially on the relations Eqs. (2.17) and (2. 18)
connecting the components of the magnetic field; these relations are modified
in the scaling procedure leaving the problem in a new form that is apparently
no simpler than the original one. However, particular solutions can never-
theless be found for simple field configurations; once such a particular
solution is found, for some magnetic field, the homogeneous problem
becomes a straightforward problem in complex variables whatever the
nature of the boundaries.

Single Wire Case

First, take the magnetic field as due to a current in single wire, the
components being given by Eq. (3.10). The equations for v and p are:

A (- Qe - Lo
Y X Xt (ve i)t
Ov 3P _ -x(¥+1)

- TYY DE+y+i4

(4. 1)

(4. 2)

By transforming to polar coordinates with origin at the wire, it can be seen
that particular solutions of Egs. (4. 1) and (4. 2) exist in which v and p each
have the form of a function of the angle divided by the first power of the
distance;+*on transforming these particular solutions back into Cartesians,

one obtains:

A5l geomixtean ') o 2
Vo g B’(yﬂig + 2049 (Y% x’+£2v+.?-

(4.3)

i:[lf(r-l)MZ](vm(tan U) x =-(y-1) Y
o= E+BT(Yr )T +z x*+(y+|)2 X2 +fL v+ 02

where pz =1- M2 for subsonic flow. (4. 4)

-17-
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The complementary solution v, p. satisfies:

O _ g2 2%
oY ﬁ
(4.5)
Ive AP _
ey =0
(4.6)

and these equations will be satisfied by an analytic function w (z) defined
by:

W (Z2=X+ig Y) = Bp +iy,

(4.7)
Taking the case of a single wall at y = 0, the condition on Ve is:
v (x,o)__,i[u(tﬂ)M"]xtan"x S g*
¢ x2+g* ¥+l x3ygr|
(4. 8)
The solution of this problem is
AplraeoMdzin SiE
We(2)= ZZ + 8% tz¥ Z+l -MB]
(4.9)

From this may be found all the remaining flow quantities. For example:

P(x,00= }‘——Q-'“f;';” ; 5 §in ('*;)z_ -;&*i%f{* (-0}

X2+ 1
(4.10)
Hence, from Eq. (2.31)

-18-




) . \ \
1+(r- ) M%) 14 X% ~{ x(-g) Tt
w(x,0)= % % 3,;?1\\ oY) L+tan xg-n-z e -4 (F+tan x)

x*t+ g2
(4.11)
Furthermore, from Eq. (2. 30),
5,0z 1y M| o+ tary)- {,ﬁ‘_]
(4.12)
and from Eq. (2.29)
p.A 23, .2
_-2lir MM [_\_ oaext - 1. 32XV Mg
f (x,0)= BT el 5 In G fytta x]+__xz+_l__
-5 (¥-1ME (F +tan'x)
(4.13)

These quantities are shown in Figs. 8, 9. 10 and 11 for various values of
M, and for y= 1.4 and y = 1.0. Comment on these graphs will be reserved
until after the discussion of the supersonic case which will be given in the
next section.

The channel problem can also be solved by the method of images,
but the solution will not be presented here.

Linear Dipole

The transformation into polar coordinates can also be used to find
the particular solution to the subsonic problem when the magnetic field is
due to a linear dipole, the components of the magnetic field being given by
Eq. (3.33). The particular solution is:

o Lrer- oM IM2 I8 (v ) (y41) e 4. 1 x
fps 4D+ B85 (e 2P - (T -tan 5

P 24,8 2_ 0 4ty et
* I2DE Gy LT A +E7 (Y §) [1(3*’5 )X+ 3(1-8%-26")x"(rtd
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+3(8-56%- 76 Wrnd'+ 5-136%- 246 9> 384 (1.3 32 (v en) 5]

2
NP Y if)“;;i‘x :+("(v* 0 [‘”‘8*’ 3(9- B+ 3(8+8 = gt outy®

+Q-13 (32'- 4-5‘)&’“(#0‘1352( 1+3 A‘)(ym‘]

(4. 14)
x*-38% (Y'H)l] M2, T -1
VP= txz_'.ﬁz(Y* l)z [H'(r-l)Mz'] ‘4— ('z —ta" —Y-xn)

e [ - B +(4- 2387 58%) x*(v+0*
22+ (v+ )2 IXE+ B2 (v+1)3)3 (1 ~BTIXCH(4-2387-56"7)

3011382 4 g* eyt 3/3‘(.3+5ﬂz)(~/+()‘1

2y+ 1) e ARV 1 2 22 - 21 AP
2T+ (v+ 0T+ 8T (Y+1) [3(3*'/3 )(1-285)x"+@-28

218"+ 2600 (v 4 (3-398% 8% 3% (v 1Y% 36% -3-5ﬂ‘+4~,ﬂ")(y+.)6]

(4.15)
The homogeneous problem can again be solved by a modified complex

variable as defined in Eq. (4. 7). Taking the case of a single wall at y= 0,
the condition on Ve is:

2 2
e %,0) =“—"—((§—;-‘—’3%)1,- [+aeom?] 55 & -taa %)

- l_z(xgmm?::z [9('*ﬂz)x"f-ﬂ-zaﬂ”—5»8“)x‘+a(l—4332-+ﬂ’)x‘+382(~3—5ﬁ2)]

N z_(xajs%q 373 [3(3’«!g 2) (1-28Y x4 (4-218 - 21842 8)x*

+(3-398%- 6/6"+b/3‘)X"+3/3’“(-a~5,6‘+4/3*>]

(4.16)
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The solution to the homogeneous problem is then

"{i 2 [- (2*36*)1n T’i‘%’

(z+ig)? + (2% +83% z2 4+ 4%

2>+ B4 +58) -(r-n) _3(z+2i) |, 32 2+9iz-8
v &7 J‘ [Z+ (z+ V) (Z+1) %z+a,8

we=[1+(v-1) M7 1

2+83)
3s- 38 iB  _ (3-8 (3z%+9i28-88Y 3
M7 el ey o @02 Gl ] [':/?‘ Z+1

z+21) 249i2-8 i 3@:./3“) 2i6
3('({“)2- * jé(zq-i) /3(0-/3)’- z-H/s (2;4-:,6)‘1
- (31283 (3z* +9i28-83Y
26 (z+i8)
(4.17)

and the pressure on the wall may be shown to be:

2 2 - 1h+x
pe,0)=[1+(v-nM?) S 24%:’—373%%"1 T%W[—T?’-EI

2184+58) ||, (5-0x (. X
XYL ] 128 (=@ [~ s @ )3] Iy

+ X

[ -3 -2 8 ]
Oe®0A) 7 GERY WS

(4.18)
Proceeding as before,
w(x,0)=-p(x,0)-% (F +tan'k)- 2 F—+i T eI
(4.19)
1y -1 L. 2 X
s(x,0)ayM* [4_( +tan '+t * 06X+ +, 6 (x%+: 3 (x!u)"a]
. (4.20)
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(Y-1)

px,0=MPP - = g

(4.21)

These quantities are shown in Figs. 12, 13, 14, and 15 for various
values of M and for y = 1.0, and y = 1.4, Comment on these graphs will
also be reserved until comparison can be made with the supersonic case.

It is clear that the algebraic complexity of the subsonic solutions
will preclude the use of more complicated magnetic fields, On the other
hand, the two problems which have been solved serve to show the trend of
the effects of compressibility at subsonic speeds on the type of flow being
considered. It is interesting to observe that, as in ordé'nar)r linearized
compressible flow, the pressure increases with (1 - M )'1 2

5. Supersonic Problems

When the flow is supersonic, the problems under consideration can
be treated by the method of characteristics. Introducing

= Mx- %(v+l):n=}%x+% (y+1)

b7
(5.1)
8 |
x=r (M+8) » YH=g (&)
(5.2)

where, for supersonic flow, pz = M2 - 1, Egqs. (2.25) and (2. 32) become:

U IEE- TV (YOS PN

(5.3)

2 [8P+v]= g buoy + [ (r-0M2) bt

(5. 4)
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When there is just a single plate at y = 0, the problem can be solved
for arbitrary field; the appropriate characteristics are shown in Fig. 16.
In order to find the conditions on the plate it is only necessary to integrate
Eq. (5.3) along the characteristic marked 1; since v (x, 0) =0,

) | v(x,0)=-ﬂ‘—[:-Mbk i -é—(mt),ﬁ:é'-;{—'ﬂ- g byzﬁ-(mt),i'ﬁ‘-ﬁidt

Le@-O0M2 [(TM 2 z B .‘.’l-t_'L"_z
+ - (+t), de
T fm by )™ ™

(5.5)

In order to find conditions anywhere else in the flow field, two additional
integrations are required, one from infinity along the characteristic marked
2, and the other from the plate (where v = 0 and p is given by Eq. (5. 5))
along the characteristic marked 3. By way of illustration, the two cases
considered in the last section will be worked again for the supersonic case,

Single Wire Case

For the single wire, with the components of the magnetic field given
by Eq. (3.10), the pressure on the wall becomes

P(%,0)= M —52“(Xf5).\.tan éi-»‘ §

X+ 8

¥ [(m).sx +Y}
Bx%+1) (5. 6)

where sgn (x + ) = +1, 0 or -1 according as (x + B) is positive, zero or
negative, The rise in pressure at transonic Mach numbers is again evident.
Proceeding as before,

t Bx-1

“,0)= L0 ; ,_san(x:isgta" -;2_.;: (.g*w{&)* 1"‘-;—((?‘-’-;:—3—
(5.7)
SxO= 3y M [(Fatan %)~ —E)
(5. 8)
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yiy -l Bx-| 2
Zyn(x+Bretan TGl trmt
X+8 Y- ITAED)

e (%,00= % [\ + (¥-1IM?) %‘-z‘

-3 (-M* (T v tan'x)

| (5.9)

% These quantities are shown on Figs. 8, 9, 10 and 11 along with the subsonic
| solutions. The following points should be noticed in connection with these

" graphs. First, the curves for y = 1.0 may be thought of as emphasizing

! the force aspects of the flow, while the curves for y = 1. 4 bring out the

i effect of heating, This is particularly clear in Figs. lla and 11b where it

! will be noticed that the change in density is much greater for the case M = 2,
{ y =1.4than M =5, y = 1.0. This may be thought of as being due to the

; fact that large Mach numbers correspond to low temperatures; in this case

F' conversion of a small fraction of the flow energy into heat is sufficient to

| cause a large rise in the temperature of the flow accompanied by a large
expansion. From 9a and 9b it can be seen that the change in velocity is
largely independent of the Mach number, thus the flow energy converted

into heat is roughly constant but has a much greater effect on the flow at
high Mach numbers. Finally, this phenomena will set a2 limit on the validity
of these calculations as follows: a small change in the temperature will
produce a relatively large change in conductivity (0 normally varies as
quite a high power of T), Thus, for high Mach numbers A T/T cannot
exceed some quite small value in order that the assumption of constant
conductivity should remain valid.

Ag far as the pressure effects are concerned, the dominant effect
is transonic; a large rise in pressure appears as M — 1 for both the super-
sonic and transonic cases; this is a characteristic phenomenon in all com-
pressible flows, and its appearance in this magnetohydrodynamic case is
quite interesting.

Linear Dipole

| For the linear dipole, the quantities are given by:

P(x,0) = 6M2-(:kz+l)3 (x3-38x*-3x+4)

D+Q-)MA] ™M* [ 1B~ I (x+3)(Sx-~1) ]
2B 0t ) tan XE t 3 sgn(x+8)+ MZ Tt 1)

De(-0™M*] 4i3 2.2
¥ WJ‘?(AX Bx“+306x+1)

(5.10)
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= - = -
w(x,0) =-P(X,0) -4 (F +tan x)-#.,azh +3 &i‘.;.o,. £ —(;é‘"_)g

(5.11)
SsYME § Frtaho et oot Ko+ 3 o

(5.12)
p=mtp- B s

(5.13)

and these are again shown on Figs, 12, 13, 14 and 15. The conclusions to
be drawn from these graphs are broadly similar to those for the case of

the single wire. Once again the changes in velocity are largely independent
of Mach numbers, but high Mach numbers again result in large expansion

for y =1.4. Note that in Fig. 15a the density change for M = 5 is given
while in Fig, 15b M = 2 is the highest value plotted. As far as the pressure
is concerned, the dominant effect is again transonic; a large rise in pressure
appears as M — 1.

Channel flow problems in the supersonic case are more difficult
in view of the multiple reflections, but a solution in the form of an infinite
series might possibly be constructed. No such cases have been attempted,

6. Variable Conductivity Problems

Apart from problems involving physical boundaries, an interesting
and in many ways realistic problem is that in which the conductivity is
allowed to vary with position, Up to this point, it has been assumed that the
conductivity o% was a constant at all points. It is possible by using the methods
that have been developed in this paper to treat problems in which o* is
assumed to be a function of y only. Attention will be restricted to the
incompressible case with a single wall at y = 0; the extension to channel
flows, or to subsonic or supersonic flows is immediate.

It is necessary first to modify the equations used to describe the
flow to include the possibility of variable conductivity, Taking o%* as a
reference value of the conductivity, let o' be the actual value as a function
of position, and define o = o'/c*%. Then, Eqs. (2.11) to (2. 15) will be
modified by replacing S with ¢S. Hence, using Eqs. (2.19) to (2. 23), the
right-hand sides of Eqgs. (2.24), (2.25), and (2. 27) should be multiplied by
o. In particular, the equations governing p and v become
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IS RN
(6.1)
-%:;— - (1-M%) g—% =o- [1+(¥-1)™M2] b\f'

(6.2)
For the incompressible case it is only necessary to set M = 0,

The simplest problem in which ¢ is not constant is where o = 1 for
0<y <Hand o =0 for y>H. The appropriate boundary conditions at y = H
are that v and p should be continuous. There will, however, be a jump in
u., Let subscript 1 refer to the region 0 < y<H, and subscript 2 refer to the
region y > H., Then the solution can be constructed as follows; first, in
region 1, take the particular solution given by Eqs. (3. 4) and (3. 5). This
may be referred to as (vpys pPl). Next, define the complex function

F(X)=PP‘(X,H)+ iVP‘(x)H)
(6.3)
It is now required to find a pair of complex functions, w; (z) and w; (z)

such that w; (z) is analytic in the region 0 <y < H while wp (z) is analytic
in the entire region y > H, and such that

W, (X+iH) = W X+ TH) + Fex)
(6. 4)

However, it is convenient to require that Wi should also be analytic in the
region y < 0. In this case the general solution to this problem is

-\ )
W‘(.z)‘: ﬁ f —gﬁséi— dg
4
(6.5)
== F{c)
vk [ FE-
&
(6.6)

where 61 and L‘z are large semicircles having the line y = H for diameter
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and enclosing respectively the regions y<H and y>H. In simple cases it
will be possible to find the functions wj and wp by inspection, but formulae
(6.5) and (6. 6) are quite general. At this stage the solution in region 1 may
be written symbolically as (p ) + w., while in region 2 the solution

is wp. The conditions of congnmty cross the line y = H have been met,

but the boundary at y = 0 has not yet been introduced. In order to take
account of this, a function w (z) is introduced. w (z) is analytic in the region
y >0 and satlsfles

‘o w *VP|‘*‘0\N|=O on YSO

(6.7)
The final solution is now given by:
(pP‘ ’VPI) +W, +W o<y <H
Wt W Y>H

Single Wire Case

To illustrate the use of this technique, consider first the case of

a single wire, the components of the magnetic field being given by Eq. (3. 10).

The solution (PPI’ vp1) is given by Eqs. (3.11) and (3.12), and the function
F (x) by

L X q bl
Foo = 2IX-MTO%an gir)-3itan Ao

Xt 4 (HeV) =
(6.8)
The functions w; and wp may be found by inspection to be:
41“J. t{i‘)z z
I -
wi2) = 02 Z @A)
' (6.9)
). X0 Z5iy z
W. = L&‘L’_
2 Z+\ * Tz
(6.10)

The cond1t10n on W at v, = 0 is now

J 4 (2HH X
o= BN fin SR el ST Y—
X424l

X<+ X2 41 4

(6.11)
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so that

iln 2H+1-12 ﬁzl\n -2z 3‘5
Z-i 2241 T ZeuzHAy

W=z

(6.12)

completing the solution of the problem. The pressure on the wall is given
by

=4 ‘ - ;
P(x,0) Z.X[x'z-ﬂ x&-}(LH'H)z']

‘ 2 N -1y
+ i’xl“<%%'%)'i[t‘“ 'x - tan ZR+ ]

X244

(6.13)

and is shown in Fig, 17. Clearly, when H vanishes and the flow is non-
conducting everywhere, all the flow perturbations vanish, However, as
may be seen from Fig. 17, there is only a small difference between the
case where the flow is conducting only out to y = 1 and the case where it
is conducting everywhere.

The jump in wat y = H is given by
{

- e U = LI R
wlv=He) —uly=H-) =gy (e ] N (TPe 3

(6.14)
which is, as might be expected, always positive.

Linear Dipole

For the linear dipole case, with t! omponents of the magnetic
field given by Eq. (3. 33),

Exlgx@e e e di @0 lxi- (]

FO= (AT
(6. 15)
Then:
s ) 32%-6iz(2H+1)-(leH*+20H+7)
V AB(HW® EIET T
(6. 16)

-28-




2, ¢ 2.,
wos b | 3z%t6iz(H+2)-(BH +22H +I7)
z 48(H+|)?~[ (z+13

(6.17)
go that the condition on w is:
ve 2 620 (2H+) [t se(HEOxE (2 H4 )P (16 HR420H+7)
- x’~'+u')‘3 48(n+ Xty (2H+ )]
(6.18)
giving
w={Z2:312:4) | 3z%+e@H+1)iz-UeHt200 1)
- §(z+\53 48(H+)*z+1(2H +0)]3
(6.19)

The pressure on the wall is thus;

r2xtyis) [3x*+z.(loH‘-+8H+()x2+3(,u.u|)2-(3H+|7_H+5)]
24(%2+ AW+ xR+ (ZAF1)T)3

PX.0)<"

(6.20)

and is shown in Fig. 18. Here again it may be seen that the bulk of the
perturbation to the pressure on the wall is induced very close to the wall,
The magnetic field for this case falls off with distance faster than in the
single wire case, and as a result, if the flow is conducting only out to about
y = 0.2, the effect on the wall pressure is hardly different from the case

in which the flow is conducting everywhere,

To conclude this section it will be shown how to adapt solutions of
the type given above to the case where the conductivity o is an arbitrary
function of y. Define first py (x, vy, H), (x, y, H) to be the solution to
a problem with a given magnetlc field in wﬁlmh oc=1for y<Hand o = 0 for
y > H. These are understood to have different forms according to the sign
of (y ~ H). When H is infinite, py and vy stand for the solution to the prob-
lem where the conductivity is everywhere unity, The solution to the problem
in which ¢ is a given function of y is then:

{p(x,v) »y V(X ,Y)}-- o () { Py X,%,90), vy, (X,Y,co)}

.fo{ By (4o HD, vy (,Y, H) } ‘dﬁ%ﬂ)’ "

° (6.21)
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To prove this, note first that all the solutions py (x, y, H),
vy (x, y, H) are continuous throughout the plane and give vanishing normal
velocity at the wall, Hence, the integrated solution, Eq. (6.21), has the
same properties, It remains to show that the integrated solution satisfies
the appropriate differential equation, Taking Eq. (6. 1) for example,

%&L + %.5. = & () {—g—;’ﬂ (X,Y,) + -%‘-:-,ﬂ- (X,Y,%0) }

-f" { %ﬂ-m,v,\-\)ar%—‘:ﬁ(x,v.m} del) 4y
(-]

(6.22)
But
vy . dPu _ by by (H>Y)
IR oY 0 (H<Y)
(6.23)
Thus
d - © M)y =
2 4 g8 co@bny - [T by A2 41 = o (v) beby
(6.24)

as required; similarly for Eq. (6.2).
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Fig, 3 This is the total pressure drop along a channel of height H when
the flow is impeded by the magnetic field due to a current flowing
in a single wire at unit distance below the wall,
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Fig. 5a This is the pressure gradient on the wall when the flow is
impeded by the magnetic field due to two wires carrying equal
and opposite currents situated unit distance below the wall and
2X from one another., The strength of the current in either wire
is varied with X in such a way that the field strength at the origin
remains fixed.
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This is the total pressure drop along a channel of height H when
the flow is impeded by the magnetic field due to a linear dipole

at unit distance below the wall.
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This is the pressure on the lower wall of a channel of a height H
when the flow is impeded by the magnetic field due to a linear
dipole at unit distance below the wall.
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Fig. 8b This is the pressure on a wall when the flow is impeded by the
magnetic field due to a current flowing in a single wire at unit
distance below the wall, vy = 1.4,
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Fig. 11b This is the density on a wall when the flow is impeded by the
magnetic field due to a current flowing in a single wire at unit
distance below the wall, y =1.4.
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Fig, 12a This is the pressure on the wall when the flow is impeded by the

magnetic field due to a linear dipole at unit distance below the

wall,

v =1.0,
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the magnetic field due to a linear dipole.
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This is a sketch showing the characteristics used in calculating
the perturbations to a supersonic flow.
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Fig. 18 This is the pressure on a wall when the flow is impeded by the

magnetic field due to a linear dipole at unit distance below the
wall and the fluid is conducting between the wall and the line
y = H.
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APPENDIX

Note Added in Proof

Since this paper was compiled, two additional papers on this general
subject have come to the author's attention; these are the works of Ehlers
and Morioka, 7

Ehlers treats the same physical problem as is considered here, but
considers axially symmetric geometries and obtains solutions by integral
transform methods. The results appear in a form which does.not lend itself
to simple interpretation. It is interesting to note that particular solutions
to the axially symmetric incompressible problem analogous to those given
here for two-dimensional flow may be obtained. In fact, the equations
governing the axi-symmetric case are:

v 3 . de 2
It B babe s g V- SR by

where r is the radial coordinate. The magnetic field components satisfy:

by _ 35 =0 dby \ -] -
3% In 05 o t 7;'(?\)\«-)‘0

A particular solution is then

X X
vp =ibrf bydx + f by b dx
«Q

(Al)
P :-.'. X
P "2 % by dx .
-0
(Az)

The particular example treated by Ehlers involves the magnetic
field due to a circular coil. The field components in this case do not per-
mit the evaluation of the integrals (Al) and (A2) in closed form, but it
seems clear that simple axisymmetric fields could be treated in detail
using the particular integrals given above.
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Morioka, on the other hand, treats precisely the two-dimensional
problem treated here, with the magnetic field being due to a linear dipole.
His method is somewhat similar to that of the present paper, but the results
disagree; certain misprints have been found in Morioka's paper, but it is
not known whether all the differences in results can be attributed to mis-
prints.
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